
A JAVA UNIVERSAL VEHICLE ROUTER
IN SUPPORT OF ROUTING UNMANNED

AERIAL VEHICLES

Robert W. Harder, 2nd Lieutenant, USAF

AFIT/GOR/ENS/00M-16

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

3533©^ 20000613 102

REPORT DOCUMENTATION PAGE Form Approved
OMBNo. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 2000

3. REPORT TYPE AND DATES COVERED

Master's Thesis
4. TITLE AND SUBTITLE

A JAVA UNIVERSAL VEHICLE ROUTER IN SUPPORT OF ROUTING
UNMANNED AERIAL VEHICLES

6. AUTHOR(S)

Robert W. Harder, 2Lt, USAF

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology
2750 P Street
Wright-Patterson AFB, OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GOR/ENS/OOM-16

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Mark O'Hair, Lt Col, USAF
UAV Battlelab
1003 Nomad Way, Suite 107
Eglin AFB, FL 32542-6867

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

mark.ohair@eglin.af.mil
Comm: (850) 882-5940 x208
DSN: 872-5940 x208

11. SUPPLEMENTARY NOTES

Advisor: Maj Ray Hill, AFIT/ENS,
Comm: 937-255-6565 x4327, DSN: 785-6565 x4327
ray.hill@afit.af.mil
12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Max/mum 200 words)

Unmanned Aerial Vehicles (UAVs) help the military gather information in times of peace and war. During a mission,
typically 100 sites or more, a UAV will frequently be re-tasked to visit a pop-up threat, leaving the operator to determine the
best way to finish the day's list of sites after the re-tasking. I develop a prototype application to serve the needs of a specific
customer, the 11th Reconnaissance Squadron, by helping them preplan missions and dynamically re-task UAVs. This
prototype application is built on a reusable airframe router called the core AFIT Router, which can later be added to more
sophisticated mapping and planning software for other customers. The core AFIT Router is built on a new architecture,
defined and implemented in this research, which calls for tools that solve entire classes of problems. To support the UAV
routing problem, I develop such an architecture for Vehicle Routing Problems (VRPs) and Traveling Salesman Problems
(TSPs) and call it the Universal Vehicle Router (UVR). The UVR allows for many solving techniques to be plugged in, and
two sample solvers are included, one a tour-building heuristic by Gary Kinney and the other an adaptive tabu search
developed in this research.

14. SUBJECT TERMS

Vehicle Routing, Unmanned Aerial Vehicles, UAV, Java, architecture, tabu search
15. NUMBER OF PAGES

73
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the United States Air Force,

Department of Defense, or the US Government.

AFIT/GOR/ENS/00M-16

A JAVA UNIVERSAL VEHICLE ROUTER

IN SUPPORT OF ROUTING UNMANNED

AERIAL VEHICLES

THESIS

Presented to the Faculty of the Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Operations Research

Robert W. Harder, B.S.

2nd Lieutenant, USAF

March 2000

Approved for public release; distribution unlimited

AFIT/GOR/ENS/OOM-16

A JAVA UNIVERSAL VEHICLE ROUTER

IN SUPPORT OF ROUTING UNMANNED

AERIAL VEHICLES

Robert W. Harder, B.S.

2nd Lieutenant, USAF

Approved:

iyHill, Major, USAF Ray
Advisor

Dr. James Moore
Reader

Date

fsfe~—^Mi£jA 31 E,£oö

^/,7/M^ 21F^OO

Acknowledgements

Thank you to my loving wife Gabrielle for whom this 18 month stint at AFIT was

her honeymoon. I'll give you a real one, honey. She encouraged me and cared for me while I

tarried away. Thank you to my friends at Fairhaven Church who encouraged me in growing

spiritually as well as academically. Thank you to those at AFIT who befriended me and

shared my joys and trials. Thank you to Tony and Beth Snodgrass for the holiday meals.

Thank you to Chris Cullenbine who helped debug my tabu search software and Shay

Capehart who always helped me think through my philosophical questions.

Thank you to my thesis advisors, Maj. Ray Hill and Dr. James Moore, as well as my

original advisor Dr. Glenn Bailey who retired on me. Thank you to my thesis sponsor Lt.

Col. Mark O'Hair who encouraged us, funded us, and sent us to Europe. Thank you to my

colleague Capt. Gary Kinney for showing me where to eat in Germany and to our contact at

the CAOC Lt. Col. Raplh Park for showing us where to eat in Italy.

in

Table of Contents

Acknowledgements iii

Table of Contents iv

List of Figures vi

List of Tables vii

Abstract viii

Chapter One: Introduction 1
Setting 1
Purpose 2
Existing Software 4
Conclusion 6

Chapter Two: Literature Review 7
Tabu Search 7
Advances in Tabu Search 8

Reactive Tabu Search 9
Hashing Techniques 10
Elite List 11
Jump Search 11

The Traveling Salesman Problem (TSP) 12
l-TSP 14
Multiple-TSP 14
mTSP-Time Windows 16

The Vehicle Routing Problem (VRP) 17
Simple VRP 17
VRP-Time Windows 18
Heterogeneous Vehicles VRP(TW) 19
Multiple Depot (Het)VRP(TW) 21
Other VRP Issues 21

Summary 22

Chapter Three: An Architecture for Optimization Applications 23
Introduction 23
Proposed Architecture 24
Instance of Architecture for VRPs and TSPs 25

Prototype Application 26
Core AFIT Router 31
Universal Vehicle Router 36
Solver Interface 39
Sample Adaptive Tabu Search Solver 40
General Tabu Search 41

Conclusion 45

iv

Chapter Four: Empirical Analysis 46
Introduction 46
Selecting a Tabu List Style in the UVR's Included Tabu Search 46
Setting the Parameters in the UVR's Included Tabu Search 47
The Universal Vehicle Router, Sample Tabu Search, and Solomon Data Sets 50
Conclusion "

Chapter Five: Conclusion 54

Specific Contributions 54
Recommendations for Future Work 55

Bibliography 56

Additional References 60

T.ist of Figures

Figure 1: Predator UAV in the air 2

Figure 2: AFIT Router layers 4

Figure 3: Sample screen shot of O'Rourke and Flood's software 5

Figure 4: Example of a forward insertion move 14

Figure 5: The situation facing an analyst 23

Figure 6: Architecture for the general operations research software 24

Figure 7: Architecture for Vehicle Routing and Traveling Salesman class of problems.. 26

Figure 8: Screenshot of main prototype AFTT Router panel (MacOS) 27

Figure 9: Screenshot of sites screen (Solaris/CDE) 28

Figure 10: Screenshot of vehicles and bases screen (Linux/KDE) 29

Figure 11: Solve dialog for prototype AFIT Router (MacOS) 29

Figure 12: Screenshot of multiple solutions screen (Windows) 30

Figure 13: Screenshot of single solution screen (Solaris/OpenWindows) 31

Figure 14: AFTT Router Core Kernel as a point of contact 32

Figure 15: Distance and heading geometry on a spherical triangle • 34

Figure 16: Headwind and tailwind ground speed adjustment 36

Figure 17: Representation of a solution in the UVR 38

Figure 18: Steps for the adaptive tabu search 40

Figure 19: General cycle of a tabu search 42

Figure 20: General tabu search engine 43

Figure 21: Visual summary of parameter settings tests 49

Figure 22: Comparing UVR with tabu search and best known Solomon solutions 51

VI

List of Tables

Table 1: Information tracked by the core AFIT Router kernel 33

Table 2: Information and control requested by the UVR of higher level software 37

Table 3: Comparing performances of two tabu list styles 47

Table 4: Parameter settings for adaptive tabu search 48

Table 5: Performance of UVR against best known solutions 51

vn

AFIT/GOR/ENS/OOM-16

Abstract

Unmanned Aerial Vehicles (UAVs) help the military gather information in times of

peace and war. During a mission, typically 100 sites or more, a UAV will frequently be re-

tasked to visit a pop-up threat, leaving the operator to determine the best way to finish the

day's list of sites after the re-tasking. I develop a prototype application to serve the needs of

a specific customer, the 11th Reconnaissance Squadron, by helping them preplan missions

and dynamically re-task UAVs. This prototype application is built on a reusable airframe

router called the core AFIT Routerwhich can later be added to more sophisticated

mapping and planning software for other customers. The core AFIT Router is built on a

new architecture, defined and implemented in this research, which calls for tools that solve

entire classes of problems. To support the UAV routing problem, I develop such an

architecture for Vehicle Routing Problems (VRPs) and Traveling Salesman Problems (TSPs)

and call it the Universal Vehicle Route^JVR). The UVR allows for many solving

techniques to be plugged in, and two sample solversare included, one a tour-building

heuristic by Gary Kinney and the other an adaptive tabu search developed in this research.

vm

A JAVA UNIVERSAL VEHICLE ROUTER

IN SUPPORT OF ROUTING UNMANNED

AERIAL VEHICLES

Chapter One: Introduction

Setting-

Unmanned Aerial Vehicles (UAVs) serve America's military forces by flying in

dangerous areas in primarily surveillance missions. Because they are unmanned, UAVs have

endurance times that far exceed any mission normally flown by manned aircraft. Long

endurance times mean a UAV may visit many targets, or sites, during a mission. Due to

myriad planning considerations, finding a good path among the sites that the UAV must visit

is a daunting task. UAV operators have software to help plan a mission for each UAV, but

the tools lack a way to suggest a sequence in which to visit these sites. A good sequence or

route is one that dramatically reduces mission times and exposure to threats while satisfying

the critical needs placed on the overall mission.

The Predator UAV, in use by both the US Air Force and US Army, can stay aloft for

more than 24 hours while cruising at 70 knots at altitudes up to 25,000 feet. With a variety of

intelligence-gathering payloads, the Predator transmits high resolution video and synthetic

aperture radar images via a satellite link or line of sight communications. This information is

useful for preplanning missions, executing missions, and assessing batde damage. Figure 1

shows a Predator in flight.

Figure 1: Predator UAV in the air

In wartime scenarios, UAVs may be responsible for imaging hundreds of sites every

day. Although a list of sites to visit is available at the beginning of the day, past conflicts have

shown that a hundred or more targets may interrupt that list throughout the day, requiring

quick-turn re-tasking of intelligence assets. The daunting task of re-routing a UAV to

accommodate these pop-up targets that interrupt the pre-determined target list falls squarely

on the shoulders of the UAV operators. Existing mission planning tools provide little

support in the re-routing efforts of the UAV operators.

Purpose

This thesis presents an architecture for and prototype application of a routing tool to

help UAV operators reduce mission times in both the preplanning and real-time re-tasking

phases. All code, to include the sample search algorithm within the router, was coded in Java

and designed to work with the existing mission planning tools in use by UAV operators. The

algorithm extends O'Rourke's (1999) work and adds new UAV considerations—site

priorities and restricted geographic operating zones—and new tabu search techniques, some

found in the literature and some developed in this research.

The architecture and prototype application is built around a Universal Vehicle

Router (UVR) specified and developed in this research. Figure 2 suggests how the various

components in the architecture work together in layers to form the AFIT Router, used for

the specific UAV routing problem. The UVR supervises the solving (generating and

improving routes) by exploiting modern object oriented techniques to interface to add-in

Vehicle Routing Problem (VRP) solvers. In general this approach looks not to include a

specific set of features but instead seeks not to prohibit both common and obscure features.

For example, in a general routing application, accounting for multiple operating locations, or

depots, can get complicated with traditional approaches. However, within the VRP solver

paradigm, each vehicle dictates its own starting position and so could have its own depot. An

application, such as the UAV algorithm in this research, does not need to know about

routing algorithms when using the UVR. It simply describes its components in terms of

performance and capabilities.

ART Router (UAVs)

Knowledge:
Vehicle specifications
Geography
Wind effects
Imaging Types

Universal Vehicle
Router (UVR) Add-in Solvers

Knowledge:
TSPs/VRPs
Service orders
Reduce travel
Order specifications

Figure 2: AFIT Router layers

Knowledge:
Tabu search (included)
Genetic algorithms
Simulated annealing

This thesis effort is part of a larger effort sponsored by the UAV Battlelab directly

supporting the 11th Reconnaissance Squadron. This research defined and built an

architecture for routing problems and used the architecture to prototype the ^LFZT Router, a

UAV routing tool. Kinney (2000) developed and empirically tested solution heuristics

incorporated in the Universal Vehicle Router. External to these research efforts were efforts

to interface the prototype AFIT Router application with the existing DEMPC software (see

below) and train the 11th Reconnaissance Squadron personnel on the use of the AFIT

Router.

Existing Software

UAV Battlelab-sponsored research by O'Rourke (1999) extended previous work

(Ryan 1998 and Carl ton 1995a) and included software (Flood 1999) that provided a graphical

user interface (GUI) to tie maps and targets to routes. This.software, called Auto-Router,

uses a tabu search meta-heuristic to find good, possibly-optimal, routes for UAVs. Figure 3

shows a sample Screenshot of this Auto-Router software. In Figure 3, triangles represent

targets visited along the UAV route represented by the connected directed arcs. The single

operating location (depot) is at the upper left corner represented by the 11th Reconnaissance

Squadron patch.

Rg* Automute Application EHE!

Figure 3: Sample screen shot of O'Rourke and Flood's software

This software was a good first step in combining routing software with a usable

Graphical User Interface (GUI), but with a limited interface, the Auto-Router best served as

a proof of concept for future work.

A mission planning tool called DEMPC (Data Exploitation and Mission Planning

Console) was developed by Boeing for the Predator UAV Operators. DEMPC allows

Operators to both preprogram a mission and follow an ongoing mission. The DEMPC has

its own useful GUI. Since the DEMPC has this GUI, our prototype application does not

need any map overlay features like O'Rourke and Flood's Auto-Router. The DEMPC has

tools that help the operators with how the Predator is to fly: waypoint-to-waypoint, wings

level, record imagery, stay in assigned air space, avoid threats, and avoid terrain. The

DEMPC does not address why the Predator flies where it does. There is no auto- routing

feature to help the operators know why they should fly a particular route.

When a UAV is re-tasked to visit a new site, the UAV operators must replan the

mission manually. Sometimes after visiting a new site, returning to where they left the

planned route is sufficient, but that detour could add enough extra travel time to adversely

affect the rest of the mission. If the UAV operators could generate a new plan while on their

way to a new site, they might not have to skip sites for fear of running out of fuel or missing

time over target requirements (referred to as time windows).

Conclusion

This thesis presents the specification and design of a flexible architecture built

around a Universal Vehicle Router (UVR) for solving Vehicle Routing Problems. The UVR

was applied to the UAV routing problem in support of the 11* Reconnaissance Squadron

and applied to the academic problems contained in the Solomon data sets for testing.

Chapter Two: Literature Review

The Traveling Salesman Problem (TSP) and Vehicle Routing Problem (VRP) are

members of a general class of problems where one or more vehicles visit customers and may

or may not deliver some product along the way. Often there are extra considerations such as

visiting a particular customer within a certain time window or specifying that certain

customers must be visited before or after other customers.

There are a variety of techniques to solve these problems but none have been as

effective overall as tabu search (Laporte 1992). A survey of these problems, starting with the

simplest Traveling Salesman Problem and working up to complex Vehicle Routing

Problems, follows an overview of tabu search.

Tabu Search

Tabu search is a technique developed by Glover (1986) that intelligently searches the

solution space of a complex problem. It works on the principle that the use of memory can

help a search avoid getting trapped in local optima and can help it look more closely at

optima that may be sensitive to small changes. Tabu search explores the solution space in

small steps and typically halts arbitrarily after some number of iterations, typically 1,000 to

5,000. The tabu search process is defined by an operation called a move. A move is an

operation on a solution that changes that solution. That changed solution is called the

neighbor of the current solution since the changed solution is only one move away from the

current solution. A move can be as simple as toggling a binary variable on or off or swapping

two items in a sequence. In each iteration the tabu search evaluates all, or some portion of,

neighboring solutions. All such neighboring solutions comprise the neighborhood ofthe

current solution. The tabu search picks the neighbor with the best objective function value,

and that neighbor becomes the current solution for the next iteration.

As moves are executed, their particular attributes are registered on a tabu list,

remaining there for a specified number of iterations, the tabu tenure. The tabu list size and the

tabu tenure are closely related and vary based on problem specifics. While tabu, the move

cannot be chosen unless the tabu restriction is overridden by some useful goal, called an

aspiration criterion. One common aspiration criteria is achieving the best known solution. The

basic purpose of the tabu list is to avoid revisiting previous solutions and force the search

into unexplored areas of the search space. Altering the size of the tabu list helps control

search features.

Common enhancements to tabu search include intensification and diversification. The

tabu search uses these features to look more closely at a particular solution (intensification)

or to move to a different part of the solution space (diversification). A long tabu list can

force the search to visit new locations (diversification) while a short tabu list can force the

search to spend more time around the current solution (intensification).

Advances in Tabu Search

Tabu search (TS) has been applied to more than just TSPs and VRPs, and for those

problems where TS may not seem to be a first choice, it can be a meta-heuristic, guiding

other search techniques. A discussion of several aspects of TS follows.

Reactive Tabu Search

There are several parameters used to specify a particular tabu search. For example:

tabu list length and neighborhood size. Properly setting these parameters can dramatically

improve tabu search performance. A tabu search that tunes these parameters as it searches

the solution space is called a reactive (or adaptive) tabu search. Battiti (1996) points out a

drawback to tuning these parameters prior to the search process: you need either a lot of

prior experience and knowledge about the problem or you need to do a lot of trial and error

to find the parameter settings. He further points out that a "crucial issue" in heuristics is

finding the balance between a detailed search in a local optimum and diversifying the search

to include other portions of the solution space. Indeed there may be no optimal parameter

settings to satisfy this balance. Thus a self-tuning tabu search may be necessary to both

explore and escape local optima.

Making the tabu list tenure {i.e., how long a move remains tabu) reactive is a

common and very effective way to increase the quality of a tabu search. Battiti (1996)

defines a hamming distance as a way to measure how far away one solution is from another.

By tying the tabu list tenure to this hamming distance, Battiti intensifies and diversifies the

search as needed. Battiti suggests using the following function, where T= 1 (Tis an attribute

of the tabu list length) at the beginning and L is defined as the size of the neighborhood, to

change the tabu list tenure (T-REACT) when a local optima is repeated.

T-REACT(T) = min{ max{ Tx 1.1, T+ 1 }, L-2 } (1)

The upper bound of L - 2 ensures that the tabu search will always make a decision

based on the objective function and never just default to a new solution. Similar schemes for

modifying the tabu list tenure have proved successful (Toulouse etal. 1998 and Talbi eta/.

1998) including O'Rourke's (1999) tabu search in the Auto-Router software.

Hashing Techniques

Original tabu search methods determine tabu moves by some attribute of the move

such as a binary variable i being toggled on or off. Woodruff and Zemel (1993) suggest using

a hashing function to characterize the entire solution and place that characterization on the

tabu list, thus making previously visited solutions tabu. This tabu list is less restrictive and

thus needs a longer tenure to match the characteristics of a traditional tabu list. Woodruff

and Zemel (1993) state three goals for a hashing function: computation should be easy,

storage and comparison efforts should be reasonable, and probability of collision should be

low. A collision occurs when two dissimilar solutions yield the same hash value and thus

appear to be the same solution.

A hashing function generates an integer in some predefined range mapping a larger

domain to a smaller domain. The size of this predefined range directly affects the probability

of a collision, and smaller ranges have a higher chance of collisions (imagine trying to map

basketball scores to a number between 1 and 10). It might appear that the probability of a

collision is the inverse of the maximum range (1/MAXRANGE), but Carlton and Barnes

(1996) point out that this is an overly optimistic estimate of collision rates. Recalling the

birthday problem, they note that there is a better than 50-50 chance of two people in a room

of 25 having the same birthday, not the 1/365 = .00274 chance one might expect. Extending

this principle to the hashing problem, they show that with a two-byte number (up to 65,535)

there is an 85% chance of a collision after just 500 iterations when all solutions are hashed

and recorded.

10

Woodruff and Zemel (1993) present two hashing functions that use pre-computed

vectors or matrices of random integers, % and where x,is some value for element /in the

solution. The first

/=/

uses as many random integers as there are decision variables. The second creates an n X n

matrix, Z, of random integers and a hash value based on

A2=2zfo,*w) . (3)
i=l

The second hash function provides a lower probability of collision at the expense of taking

up more memory with its n X n matrix.

Elite List

As it continues its iterations, a tabu search may save good solutions that meet certain

criteria This list of good solutions is called an elite list, and the tabu search may go back to

these solutions and perform a more intense search in that part of the solution space.

Although the tabu search may spend a lot of time building the initial elite list, the focused

intensification it later performs often outweighs the effort expended.

Jump Search

Many good tabu searches build an elite list of good solutions and then revisit these

solutions with various intensification or path-relinking techniques. Tsubakitani and Evans

(1998a) coined a technique catted jump search where solution-construction heuristics

11

effectively give the tabu search an elite list at the first iteration. Having an elite list from the

start saves valuable tabu search iterations. The Universal Vehicle Router in this thesis uses

jump search solution-construction techniques developed by Kinney (2000).

The Traveling Salesman Problem (TSP)

The Traveling Salesman Problem (TSP) presents a case where a number of

customers must be visited exactly once by one or more salesmen or vehicles. The simplest

TSP with one vehicle can be represented as follows. Let nc be the number of customers. Let

xr equal 1 if customer/' is immediately preceded by / and zero otherwise. Let c~ be the cost of

traveling from customer i to customer/ Let t-- be the time it takes to travel from /' toy. Let Sj

be the service time aty". Let R be the limiting range in time of the vehicle. Although the

limiting range R is not technically included in the simplest possible TSP, it is included here,

skipping the more trivial case when the vehicle's route could go on forever..

minZ = ££x,yciy (4)
i=0 y=l

{Minimize total cost—usually travel time}

subject to

|>,y=; \fj = l..nc (5)

{Arrive at each customer once}

12

£*„=; v/=ö..«c (6)

{Leave each customer once}

,=0 7=1 (=0 y=l

{Range of vehicle}

*v e *tf }

I=0.JIC, ;=7..nc (8)

{Domain}

££x,<nc-7 (9)
.=/ j=i

{Subtour-breaking constraints}

Calrton (1995) presents a very effective method for the TSP that avoids some of the

difficulties associated with the previous notation. It involves listing all vehicles and

customers in a vector where solution states can be changed by removing an item and

inserting it before or after its current position. Figure 4 shows an example of what the vector

might look like as well as some possible moves for customer number two. The move shown

is called a forward insertion move.

13

0 1

T(d) = T)—^T)—-^—^J)—{7)—► 6 —.

s
©

Vehicle Nodes

Customer Nodes

Figure 4: Example of a forward insertion move

1-TSP

The simplest case of a TSP involves one vehicle that must visit each customer.

Because this is the simplest case, it is a good test platform for experimental techniques that

may prove useful in more complicated problems. Since tabu list tenure gready influences the

success of a TSP solved by tabu search, Tsubakitani and Evans (1998b) use a 1-TSP with a

symmetric cost matrix to find a good tabu list tenure based on the number of customers in

the problem. They suggest a tenure between tie/16 and nc/A depending on the complexity of

the moves used in the tabu search. Gendreau et al. (1992) develop an insertion and post-

optimization technique called GENIUS (Generalized Insertion and Unstringing/Stringing)

that can help heuristics solve TSPs. The insertion technique (GENI) can be used in more

complicated problems. The post-optimization technique (US) can be modified for more

complex problems.

Multiple-TSP

With Multiple-TSP (mTSP) problems, there is more than one vehicle capable of

visiting the customers. This requires a slight modification to the decision variable x. Let v

14

index nv vehicles and let X-j equal one if vehicle *>goes from /'toy and zero otherwise. The

objective is

nv nc nc

minZ-SEZ^ (10)
v=l 1=0 j=\

{Minimize total cost}

and the rest of (5) through (9) becomes

EX4=; Vy = i..nc (11)
v=/ 1=0

{Arrive at each customer once}

nv nc

££^=7 Vi = 0..nc (12)
v=; j=i

{Leave each customer once}

nc nc nc nc

1=0 7=1 1=0 j=\

{Range of vehicle}

i = 0..nc, j = l..nc, v = l..nv (14)

{Domain}

nc nc

£^x,;<nc-7 Vv = /..nv (15)
.=/ ;=/

{Subtour-breaking constraints}

15

mTSP-Time Windows

The mTSPJ with Time Windows (mTSFTW) adds the restriction that customers must

be visited within a certain time frame. Generally, the vehicle may arrive early but must then
I

wait until the beginning of the time window. Let e, be the earliest arrival time, lt be the latest

arrival time, and s{ be the service time for customer i. Let ts be the travel time between
t

customers /' and/ Let At and T, be the time a vehicle arrives at customer / and the time it
i

begins servicing customer;', respectively. Let W{ be the time spent waiting for service to

i
, To account for time windows, the following two equations are

above.

begin at customer i.

appended after (15)

ifxl=lthenTi+si+tij+Wj<Tj

{Time precedence}

e, <7] </,. Vi = l..nc

{Time windows}

(16)

(17)

and the vehicle range constraint (13) is rewritten as

lj=0 7=1 i=0 j=\ 1=0 y=l

{Range of vehicle}

(18)

16

The Vehicle Routing Problem (VRP)

The vehicle routing problem adds vehicle capacities and customer demands to the

traveling salesman problem. The literature is rich on VRPs since VRPs closely resemble the

majority of problems in the real world. A progression from simple to complex VRPs

follows.

Simple VRP

In a VRP, one or more vehicles deliver products to customers. Nearly all VRPs

assume multiple vehicles, so the M is commonly dropped from MVRP. Just as the 1-TSP is

useful for experimental TSP techniques, the single VRP is used to test new VRP techniques.

Gendreau eta/. (1994) develop a heuristic called TABUROUTE that works within a tabu

search and allows infeasible solutions during the search. This heuristic performs well and

outperforms many of the top performing heuristics. Gendreau eta/. (1996) extend

TABUROUTE to solve VRPs with stochastic demands and customers to test the robustness

of a heuristic. Traditional VRPs assume only one kind of product or service is supplied by all

vehicles.

To account for the vehicles' capacities to deliver products, let dt be the demand of

customer / and D be the capacity of each of the vehicles. This assumes the vehicles are

identical, or homogeneous. Letting V be the set of customers visited by vehicle v. The

objective is

nv nc nc

minZ = XEE^c.y (19)
y=I 1=0 y=l

{Minimize total cost}

17

subject to

22*l=* Vj = l..nc (20)
v=l i=0

{Arrive at each customer once}

nv nc

££^=i Vi = 0..nc (21)
v=y j-i

{Leave each customer once}

nc nc nc nc

TL*?v +2l*?J*R Vv = l..nv (22)
i=0 y=l i=0 j=\

{Range of vehicle}

4 e {0,i}

/ = CLnc, j = l..nc, v = I.JIV (23)

{Domain}

£ £ xjj < nc - 7 V v = l..nv (24)
,=/ 7=/

{Subtour-breaking constraints}

^dt<D Vv = l..nv (25)
isV"

{Demand and capacity}

VRP-Time Windows

Reflecting real-world concerns, many people require that some customers be visited

within a certain time window. Desrochers et al. (1992) use a column generation technique to

solve 100 customer problems to optimality while determining the ideal number of vehicles to

18

have in the fleet. Garcia eta/. (1994) use a parallel tabu search to explore large regions of the

solution space, resulting in good solutions very quickly. Formulating time windows in a VRP

is similar to formulating time windows in a TSP. The following equations are appended after

(25).

if 4 = 1 then Ti + st + ttj + Wj < Tj (26)

{Time precedence}

e, <!;.</,. VI = 7.TIC (27)

{Time windows}

and the vehicle range constraint (22) is rewritten as

XX^+XX'^+XX*^* Vv = 1^v (28)
1=0 y=l 1=0 j=\ i'=0 j=l

{Range of vehicle}

Heterogeneous Vehicles VRP(TW)

Heterogeneous vehicles do not share the same capacity or range, though they

typically still carry only one type of service or product. Gendreau et al. (1999) adapt the

GENIUS heuristics to account for different capacities and ranges and experiment with

several parameters to suggest a robust set of values. In their tests on smaller problems (fewer

than 75 customers), other techniques outperform GENIUS, but on larger problems,

GENIUS produces the best results. To account for heterogeneous vehicles, many of the

variables need to be indexed by the vehicle v. c~ becomes cv
tj, Sj becomes sVj, R becomes R,

and D becomes D". The objective is:

19

nv nc nc

"i" Z = IZI*^ (29)

subject to

v=l i=l y=i

{Minimize total cost}

nv fn

££^=7 V; = i.Jic (30)
v=/ 1=0

{Arrive at each customer once}

££*,;=; V/=O.JIC pi)
v=/ j=l

{Leave each customer once}

fit «t Mt Mt '»t "t

xz^+zx^+zz^^ Vv=^""v C32)
,=0 j=l i=0 j=l 1=0 y'=7

{Range of vehicles}

i = 0..nc, j = l..nc, v = l..nv (33)

{Domain}

££4<nc-7 Vv = /..nv (34)
;=/ y=/

7'*'

{Subtour-breaking constraints}

£</,. <DV Vv = 7../iv (35)
ieV"

{Demand and capacity}

ifx;=l then Ti+s] +t; + W, <Tj (36)

{Time precedence}

20

e, <T; </,. Vi = l..nc

{Time windows}

(37)

Multiple Depot (Het)VRP(TW)

Stationing vehicles at different depots requires a closer look at which vehicles are

assigned to service which customers. Renaud eta/. (1996) present a tabu search algorithm

called FIND—Fast improvement, Intensification, and Diversification. The three phases in

the FIND algorithm address the three key stages in tabu search. Published results suggest

FIND outperforms existing algorithms on benchmark tests. An effort by Laporte et al.

(1988) uses graph transformations with a modified branch and bound procedure to

VRPs. One way to account for multiple depots extends the

. For example, the unique cost matrix cjj would differ from

successfully solve multiple depot

notion of heterogeneous vehicles

another cv not only because of vehicle performance but because of depot location.

Other VRP Issues

VRPs can grow in complexity to reflect real-world concerns until the formulation

becomes almost too unwieldy. Several efforts have expanded VRPs to include these real-

(1997) address the possibility that a vehicle may be reused

the possibility of threat circles and no fly zones for

Unmanned Aerial Vehicles (UAV). O'Rourke (1999) considers wind speeds and directions at

different altitudes for UAVs. Laporte eta/. (1988) determines where multiple depots should

be located and assigns vehicles to' customers.

world complexities. Golden et al.

during the day. Ryan (1998) adds

21

Summary

Many people have solved the TSP, VRP and their variants. This chapter surveyed

the TSP and VRP problems and their various extensions. These problem extensions have

pushed problem complexity (and thus problem size) closer to real-world problem

complexity. As these mathematical problems get more complicated, encompassing more of

the real-world aspects, traditional solution techniques become harder to apply. In fact some

formulations get to be so complex that being able to implement and represent them is as

difficult a task as solving them. Thus, real-world problems require real-world structures, and

object-oriented techniques can provide those real-world structures. An architecture for

optimization applications designed and realized in this research offers such a real-world

structure.

22

Chapter Three: An Architecture for Optimization Applications

Introduction

As problems grow in complexity, and the time available to obtain solutions

diminishes, analysts need flexible tools that solve classes of problems (vehicle routing,

assignment, scheduling) versus just techniques (linear programming, integer programming,

heuristic libraries). Creating such flexible tools requires an understanding of the situations

facing analysts. Figure 5 depicts the situation.

Problem Classes
'vehicle routing, scheduling. etcN

Techniques
linear programming, tabu search, etc

Figure 5: The situation facing an analyst

At the top level are the messes which managers and leaders must deal with regularly

and for which models are built to provide insight (Ackoff 1979). An analyst examines and

frames the mess as a particular class of problem, such as vehicle routing or scheduling

problem. Once the problem is classified, a set of techniques are available. The analyst then

chooses a technique best suited for the problem at hand.

23

One of two difficulties often arise once the technique is selected: 1) software

implementing the technique must be written from scratch or 2) existing software requires

analysts to translate their problem directly from some other solution formulation or data.

The modern analyst needs to be able to plug into reusable, general purpose techniques.

Reusable techniques mean analysts only develop those components particular to their

problem. Such an architecture is available

Proposed Architecture

The analytic community needs an architecture that facilitates reuse rather than

reinvention. Such an architecture allows one analyst to solve a problem class without

recreating a technique, while another analyst could test a new technique on real, existing

problems. Figure 6 proposes such an architecture.

Messes use:

Problem Classes:

Techniques:

Applications Simulations

Routing Scheduling

Solver Interface

Algorithms Heuristics Guesses

Figure 6: Architecture for the general operations research software

Developing software at each level requires the analyst to identify the level's common

elements. For an example at the technique level, setting some variable xf to 1 is not common

to tabu searches, but evaluating a neighborhood and selecting an appropriate move is. For an

example at the problem class level, not all traveling salesman problems (TSPs) use surface

24

roads to get from A to B, but all TSPs are concerned with some kind of cost for traveling

from A to B. Modules developed for each layer communicate via defined interfaces. Thus an

application in capital budgeting passes information to a multi-dimensional knapsack problem

class model which in turn passes information to an available solver which may be some

heuristic.

Instance of Architecture for VRPs and TSPs

For routing and rerouting Unmanned Aerial Vehicles, we need an instance of this

architecture that supports the vehicle routing and traveling salesman class of problems. This

research does not need a fully functional mapping application, only a prototype application.

Fortunately the problem class layer does not care about the specifics of these applications.

Although the windows and buttons may change with a more polished piece of software, the

elements of UAV routing will remain the same: multiple starting locations, wind speed,

"Great Circle" distances across the globe, etc. Thus the UAV routing software is broken into

a prototype application and a core component which will be identified as AFTT Router. The

AFIT Router is from the vehicle routing class and requires a layer boldly identified as

Universal Vehicle Router. To complete this first instance of the architecture, an example tabu

search solver is included. The software is coded in Java for flexibility in distribution. Figure 7

shows this specific instance of the general architecture. Each of the highlighted components

are described next.

25

Prototype
Application

Mapping
Software

Simulations

_A.

Core AFIT Router

-A

Shipping/
Trucking

Other
VRPs/TSPs

Universal Vehicle Router

Solvers

VRP Tabu Search

General IS

Linear
Program

Genetic
Algorithm

Etc.

Java Virtual Machine

Windows MacOS Solaris Linux WWW

Figure 7: Architecture for Vehicle Routing and Traveling Salesman class of problems

Prototype Application

Acceptance of new software by any user community is sometimes difficult. In

general, users want software that is easy to use and intuitive in application. They want the

software to assist their efforts, not control them. The prototype AFIT Router software was

designed for simplicity and practicality to encourage users to use it to solve their routing

problems. The front panel (Figure 8) contains important summary information and allows

quick access to more detailed information.

26

BAFIT Router!

rSites

Total:
Enabled:

|100
94

Sites.

rVehicles

Total: 4
Enabled: 4

Vehicles«.

-Other

Wind speed: 12
Wind from: West

Other.;

rSolutions
Shortest mission, length:
Shortest mission, sites visited:

sSolvet Moire«.

24hrs. 18 min.
94

L&F

Figure 8: Screenshot of main prototype AFIT Router panel (MacOS)

Figure 9 shows a Screenshot of the sites window that provides access to relevant

information about the sites that the UAVs should visit. Sites may be loaded from files or

copied and pasted from sources such as spreadsheets. Sites are designated by a name and a

latitude and longitude. They have a service time (in minutes) that estimates the amount of

time spent loitering at or around the site. The priorities allow the user to determine which

sites are preferred over other sites if not all sites can be visited. At the user's discretion, this

could mean that a priority one site is more important than any number of priority two sites

or that a certain number of less important sites outweighs a single high priority site. The

requirements field allows the option of matching a particular need at a site (laser designation,

synthetic aperture radar, etc) to a vehicle with a matching capability. Having no requirement

specified means that any vehicle may visit the site. The time window and time wall fields

(earliest arrival, latest departure, earliest restricted, and latest restricted) allow the option of

specifying when a site must or must not be visited.

27

■100l

ill

i'r S isrsna iy.~^.*»"-*>X "-•?'';

"Total - ' ' '
|. Enabled::: ■'•; ,'\'::. /'iv~> .97 j
!:] Earliest tine windowr';?/V:- 0008hi-I
] Latest tfrrre wfrriow:0639h+Zclays ,1

Etabied j feNa"me~^j Latitüde.|Longitud"e|Servici:.'.| Priority"- Reqüire-JEarliest...l Latest"7,?!EarliestZ\ Latest"."^

Figure 9: Screenshot of sites screen (Solaris/CDE)

Figure 10 shows a Screenshot of the vehicles and bases window providing access to

relevant UAV information. A base may be specified for a UAV. The UAV defaults to

leaving from and returning to the latitude and longitude of that base. If the UAV is in the air,

selecting Use Alternate Location treats the UAV as leaving from the alternate latitude and

longitude and returning to the home base. The capabilities field allows the matching of a

site's requirement to a specific vehicle or set of vehicles. All vehicles may visit sites with no

specified requirement. The speed (knots), range (hours), and altitude (feet) are used in

calculating travel and endurance times. The start time field specifies when the vehicle will be

available for takeoff, in the case of preplanning a mission, or the current time, in the case of

real-time re-tasking.

28

büP3 Vehicles & Bases wm—m^mx
lEnaBSB

Ipiarne _.
' Home Capabi... SpeedRängell Altitud... SlirllS Use Al.:. i^Eat^Aftl-Lo^ :

(2 i Predator 1 Rob AFB EO/IR,... 70 30 12,000 0814h E 23.4 10.4

E Predator 2 Rob AFB Laser,... 70 30 11,000 0900h D 0 0 j

; B Hunter A Rob AFB IÖ/IR,... 65 24 11,5 00 0930h D 0 0 j

: 0 Hunter B Rob AFB EO/IR,... 65 24 12,000 0930h D 0 0 ;

D ! EO/IR,... 100 0 0 D 0! 0 ;

■-— ■ ■- ■"

wM<?t&Z/V'% ■'• ^;sf^-lpt#l

;| limhe iif!^ Latitude ;V<V; ' Longitude ".'

; Aviano 40.0 10.0

! Other 32.5 29.4

Rob AFB 0.0 0.0

■ 0.0 0.0

\ ■ . ■ > \ "* N * <

Figure 10: Screenshot of vehicles and bases screen (Linux/KDE)

Upon clicking the solve button on the main panel, the user is presented with some

choices (Figure 11) regarding how to treat site priorities and how much time to spend

solving the problem. The "Use post-optimization" checkbox below the solve time slider

allows the user to request extra optimization at the expense of a longer solve time. Checking

this box activates the sample tabu search discussed later in this chapter.

ß| : ^Absolute Priorities^ri

: !Q Use these priorities

! PalrsWorth
; Ita INF
j 2to» INF
! 3to a INF

-FlexPrioritiesf——•~r

D Use these priorities

PalrsWorth
lto2 5
2toä S
3toS 5

Solve liine-^

Shorter';
4Ü

Q Use post-optimteatiqn

OK Cancel

-Custom Priorities- -

D Use these priorities

Pairs Worth

I to 2:|INF I

2to3:|5 I

3 to a 10

longer

Figure 11: Solve dialog for prototype AFIT Router (MacOS)

29

Figure 12 and Figure 13 provide summary and detailed information, respectively, for

solutions that have been found. A rough visual display of the solution is available as are

details regarding estimated arrival and departure times at the sites. Solutions may be saved to

disk, and sites may be selected and copied to the computer's clipboard directly or indirectly

with the copy to clipboard'button which is necessary in the case of running this software as a

world wide web applet.

-Details^! 4M
^itesSklppedJk^ *•>& 2 ;u

&k""

Predator 1
Predator 2
Hunter A
Hunter B

Predator 1
Predator 2
Hunter A

. Hunter B

Figure 12: Screenshot of multiple solutions screen (Windows)

30

ik&'&iiäLJ&JLiJL^Me-* LSolution/^^«^li
=-»

ili^äiigK

State

M WM$Zyä^-i>&*$YM \
Srte»'Vlsited:V.;:i:
.Sites SWppod: V';?

Vehick»U«Kl;"<.

f.88
0 *

, 3 '.^

l **\

! Copy to clipboard.'.

r& Highest-Skipped Priority:. -2147483647J }\'
I1.:',' .::',■'•■iiö •-<* VT- V- --^"'.., i- - i'i"i'-'i'iK'<;

i.4i£i

Vehcb?«3 3i?Närne .™1 I' latitude ^| Longitude | ~ Priority ■' | HjjrJBl Time] jepartü're t>Tie| Original OrrW •

Predator 1i^J-^4Slto_aO

Predator tfSv>

Predator l£E£

Predator Yh

Predator V

msasmm
:Slte_9 :
Srte*8t;£i-'^

230000N:

Sri«!»

85C00Q N' •-. S-W3EO0OO E ." ■ *j
Woo'öMS

P eualor^t^j "••teJZ i_j7aH:£_ÜL
Site_96 ;i lizlöoolrii

Predator 1 ,;».,{Site_87 ...!

Predator Zf^jlSrleJia^l

Ewdatar2 \. ;jSHe_62

/iSOOOOCj

Soiobol

2500Q0 E

löOOQO E

3 1335h ->1 day- '2005h +1 day }~ 123:

äQOOOO E

3 2005h +1 day 12135h +1 day

3 2135h*1 day- J2305h »1 day \.-Zt*l\

1*9'
§30

>-.<7=>">^s3'23Q5h »1 day-. j0035h->2 daya. j m%
1500(09
sföooMtSj

|;3;0037ri*2 days (0207h>2 days,fojfcäft <■•■£■-32

3i0207h +2 days"J0337h ♦2'daya-l;»*>"-sf P'33
!rn--rr:—r— .-KTZT=—— ! ■■'.—:—rr

Predator 2i;SKtjSlte^74^

Predator Z^lRSrieJSI -fei$g;
Predator 2??a^SHe_8,4j

40000 N -\y 460000 E. j ' . ■;'•';'> ■.•3j0337h +2 days 0507h »2!di>»-[r.-?:;j.;; ■■ 34
iooooo N' - ■ ■■' Tj 400000 E :;" -vfc■ .■-.;■:?;K'Ci: r.'. • ■ -.:' yM- joi ssri-äjfr «ta&iJfes&^iW 35
5oÖ0O~N ■'-■ ;'J350000 E- '- '•*!..*.. .3 0155h '', . , 0330h | ' '., , 36

SSDöOCTN ^FiSbooa E . i * *; »:-*3lo330h •■. - *J

:S30000.N:J ■igrf3oooco g*-
500000'N -if-, gi300000 Eyt|
480000 N .^,3300000 E. 1

IT- |fr-.JwSsigfjj3 OSOSh^fek 0633h.^;^Kg£5
k: ftHff&^;6'3)0S39hCa?&'*-"; oa>th:'':v' tyrR?^
^ !■■ ■ mit.» Tiw »v>— M in ■ MI I—*— . ' ■ ■ j >j. L~

SSG!äC'>C: 33

^t'oQliS Lt0943h.i
rj

Figure 13: Screenshot of single solution screen (Solaris/OpenWindows)

This prototype AFIT Router application should be of immediate use to the UAV

operators who must determine a route to sites they are tasked to visit. The site list is typically

provided in spreadsheet form, and it can be copied and pasted into this application. This

prototype is specific to the needs of the 11th Reconnaissance Squadron but serves as a

presentation mechanism for how it could be used for other needs. The reader might also

note the inherent portability of the architecture as evidenced by the previous Screenshots

taken from various computer platforms.

Core AFIT Router

The next layer of software is not concerned with how the data is presented to the

user, but how the data about sites and vehicles is stored and manipulated. The core AFIT

Router kernel (Figure 14) serves as a point of contact between the data structures and

31

application software. Not all features of the core AFIT Router kernel are used in the

prototype AFIT Router application. Existing or future software that wishes to route UAVs

(or other airframes) only need to know how to interact with the core AFIT Router kernel.

Sites

Vehicles AFIT Router
Core Kernel Miisagaal

Figure 14: AFIT Router Core Kernel as a point of contact

The kernel makes available lists of vehicles, sites, winds, restricted operating zones,

and solutions. Applications using the core AFIT Router kernel can listen for changes to

these lists and reflect these changes by updating a table of summary information presented

to the user. Table 1 shows the information tracked for the various components in the core

AFIT Router.

32

Table 1: Information tracked by the core AFIT Router kernel

Component

Site

Vehicle

Wind

Restricted Operating Zone

Information tracked
Name, latitude, longitude, priority, requirement, enabled
status, service time, earliest arrival time, latest departure
time, earliest restricted time, latest restricted time

Name, home base, capabilities, speed, range, altitude,
enabled status, earliest starting time, at home status,
alternate latitude, alternate longitude

Speed, bearing, lower altitude, upper altitude

Name, earliest arrival time, latest departure time, earliest
restricted time, latest restricted time, list of latitudes and
longitudes defining its geographic region

Restricted operating zones are not used in the prototype AFIT Router application,

but they aid in specifying time windows and time walls for entire geographic regions. Since

the data is pertinent to more than one potential airframe routing application, the kernel

maintains the data.

The core AFIT Router kernel also handles the difficult calculations for determining

travel times between two points on a windy globe. The estimated time for traveling from one

point to another is found by time = distance/ _ The distance calculation considers the great

circle effect of traveling on a sphere. These calculations make the estimated times more

accurate than a simple Pythagorean Theorem calculation. The following illustrations were

taken from O'Rourke (1999). The calculations are from AFR 51-40, Ar Navigation

(Departments of the Air Force and Navy 1983).

33

The distance in nautical miles between two points is given by

d = 60 • cos-1 [sin L, • sin L^ + cos L, • cos L^ ■ cos(>l2 - A,)] (38)

where L, and L2 are the starting and ending latitudes, respectively, and A, and X2 are the

starting and ending longitudes, respectively.

In order to account for the wind, a heading is needed. The intermediate angle H,y in

degrees clockwise from true north is given by

Hy =cos"

sin L2 - sin L, • cos
60

sin
(dA
v60,

COS.L,

(39)

This intermediate heading is used to calculate the initial true heading 0~ also

measured in degrees clockwise from true north and given by

\Hir sin(A2-A1)<0
@ii~[36V-Hij, sin(A2-A,)>0

(40)

Below is a graphical representation of this spherical triangle.

(irX,)

Figure 15: Distance and heading geometry on a spherical triangle

34

Arriving at a final ground speed GS requires several intermediate calculations. In the

following calculations, WS represents wind speed in knots from a bearing of 0m measured

in degrees clockwise from true north, and Ö is the difference between Qtj and ©m. A, B,

and C are intermediate values used to make the formulas easier to read. The ground speed

GS is calculated by

5=0,-0^ (41)

A = WS-cos(lSO-S) (42)

C = WSsin(180-<5) (43)

B = JAS
2
-C

2 (44)

GS = A + B = WS ■ cos(180 -<5) + VAS2 -WS2 -sin2 (180 -6) (45)

and the final travel time is simply ttj = d{j /GS . Below is a graphical representation of these

calculations.

35

Headwind Effect (GS < AS) Tailwind Effect (GS > AS)

. ^vs

GS

©«s

Figure 16: Headwind and tailwind ground speed adjustment

Universal Vehicle Router

The core AFIT Router kernel does nothing to route vehicles to sites but instead uses

the Universal Vehicle Router (UVR). The UVR is so named because of its ability to solve a

wide variety of VRPs and TSPs. It identifies the elements common to many VRPs and TSPs

and defines a way for higher level software, like the core AFIT Router kernel, to interact

with lower level software like a tabu search solver. If interested, the user can specify a solver

from a suite of solvers.

From the higher level software, the UVR requests information about vehicles and

orders (UVR terminology for sites or customers). From the lower level solvers it requests

solutions for routing vehicles to orders. Table 2 shows the information and control

36

requested of higher level software using the UVR. Priority values are assumed to be in

ascending order where lower values mean higher priority.

Table 2: Information and control requested by the UVR of higher level software

Component

Order

Vehicle

Information and control requested

Earliest arrival time, latest departure time, earliest
restricted time, latest restricted time, priority, order type,
amount needed

Range, earliest departure time, time to service order A,
time to travel A to B, penalty to travel A toB, supports
order type C, current amount available for order type C,
remove product for order type C, replace product for
order type C, reset products for all order types

The UVR stores solution information in a logical way that enables every instance of a

solution to contain information about every vehicle and order including vehicles not used

and orders not visited. Figure 17 visually represents how the data is stored in a solution. A

dummy tour is used to store orders that are not visited. Each tour also has a data structure as

depicted in Figure 17.

37

Solution
 COSIS (array of doubles)

-Validated (boolean)

Tour

Tour 1

Tour 2

— Tour Tiv

Dummy tour

-Departure time (double)

-Return time (double)

-Travel time (double)

-Wait time (double)

-Penalties (double)

-Busted time windows (integer)

-Busted time walls (integer)

-ETA for Order i (double)

-ETD for Order / (double)

-Validated (boolean)

- Vehicle

_ Order 1

— Order nc

Figure 17: Representation of a solution in the UVR

The data stored in the tour is factual and can be calculated without assigning any

importance to the values. The solution costs are different. They can change depending on

how the user wishes to define a good solution. The UVR lets users define an Evaluator used

by the solvers to determine solution quality. Evaluators may list any number of goals to

minimize, and each goal is considered infinitely more important than the one before it. A

typical evaluator might specify the number of exceeded vehicle ranges as the number one

goal, the number of skipped orders as the number two goal, and the total travel time as the

number three goal. A default evaluator minimizes the following: the number of exceeded

vehicle ranges, the number of busted time windows, the number of skipped orders of

priority HIGHESTJPRIORITY, the number of skipped orders of priority

NEXT_HIGHEST_PRIORITY,..., the number of skipped orders of priority

LOWESTJPRIORITY, travel time plus penalties, and wait time. Note that penalizing

38

certain legs of a route with values on a scale similar to the time units can discourage those

legs. In the case of the core AFIT Router kernel, for example, legs that cross threat areas

could be penalized more than safer legs.

Solver Interface

There are a variety of techniques to solve a VRP or TSP. The UVR provides an

interface to allow different techniques to solve the same problem. Solvers receive a solution

with all of the orders in the dummy tour (a placeholder). If they prefer, a list of good starting

solutions may be generated using a tour-building heuristic. The solver can then access all the

vehicle and order information discussed above, formulate the problem as it sees fit, and

solve its problem. A solver is asked to scale its projected solve time according to an effort

parameter (from zero to one) that is passed from the user through the UVR.

If a solver requests a list of good starting solutions, a tour-building heuristic written

by Kinney (2000) generates a list of starting solutions and ranks them according to the values

returned by the Evaluator. The heuristic is based on a Solomon insertion heuristic and varies

several parameters to generate up to 176 unique starting solutions depending on the effort

requested and the number of duplicate solutions generated. For a more detailed discussion

on the nature of the heuristic and its proven performance, see Kinney's thesis A Hybrid Jump

Search and Tabu Search Metaheuristicfor the Unmanned Aerial Vehicle (UA V) Routing Problem

(2000). The heuristic returns very good results and may itself act as a sufficient solver. One

of the two sample solvers (the other being a tabu search) simply requests this list of starting

solutions and immediately returns the best one. The UVR will use this solver if another is

not specified. A user may use this solver to get a good answer very quickly.

39

Sample Adaptive Tabu Search Solver

To demonstrate the feasibility of adding solvers, a sample adaptive tabu search solver

is included with the UVR. The tabu search requests starting solutions from the tour-building

heuristic and searches this pseudo-Elite List according to a level of effort defined by the

user. Each starting solution is evaluated for a minimum number of iterations. The search

continues if improvements continue and moves to the next starting solution if the search

stalls. The entire search stops when it runs out of starting solutions or has searched a certain

number of consecutive starting solutions without generating a new global best solution.

Figure 18 shows the steps taken by this tabu search solver.

Initialize:
Set n = number of orders

Set s = number of starting solutions

Set effort as requested by user, e e [0,1]

Set minimum number of iterations per starting solution, M = max{ 5, n * e / 2 }

Set extra iterations to give solutions, E= max{5, 0.3 * m}

Set recency of last best solution required for extra iterations to be given,

f?=max{5, 0.3 *m}

Set number of bad consecutive starting solutions before quitting,

B = min{ ns, max{ 3, s * e}}

Set tabu tenure, 7= 3 n

Set current starting solution, c = 1

Set starting solution yielding last global best solution, b = 0

Steps:
1. Set iterations left to perform, g = M

2. Perform g iterations on starting solution c

3. If a solution better than starting solution c has been found within R iterations,

set g = E and go to step 2

4. If a new global best solution has been found set b = c.

5. If c-b>=B, quit.

6. Set c = c + 1

7. If c> s, quit.

8. Go to step 2

Figure 18: Steps for the adaptive tabu search

40

This tabu search defines four types of moves: relocate within tour, relocate to other

tour, relocate to dummy tour, relocate from dummy tour. The first two move types insert

orders a maximum number of places as defined by

min{ », -1, max{ 5, 0.3 * n, } } (46)

where n, is the number of orders in the tour at that iteration. These two move types are not

generated at each iteration. They alternate such that one type is generated on odd-numbered

iterations, and the other type is generated on even-numbered iterations. This reduces the size

of the neighborhood at each iteration. The last two move types, moving orders in and out of

the dummy tour, are generated at every iteration. Each order in a real tour is moved to the

dummy tour, and each order in the dummy tour is moved to each location in each real tour.

Since this tabu search builds on a list of good starting solutions, there are generally not many

orders in the dummy tour.

This tabu search adapts to the supplied starting solutions provided by the UVR.

More sophisticated tabu searches written for the UVR may also benefit by following this

model as a way to exploit the available pseudo-Elite List.

General Tabu Search

The sample adaptive tabu search provided with the UVR is of course specific to

vehicle routing but was built from a more general tabu search code. This general tabu search

package continues the layered software approach by identifying the elements common to all

tabu searches and providing a framework on which to build specific tabu searches. It has

already appeared in three other research efforts including a weapons assignment model

41

(Cullenbine 2000), an abstract algebra approach to the Traveling Salesman Problem (Hall

2000), and a force allocation model (Calhoun 2000).

The design recognizes that although specific tabu searches have their own solution

definitions, move types, and strategies, each one generally follows the pattern shown in

Figure 19 where a given solution is altered and evaluated before a new current solution is

chosen.

Current
Solution

Evaluate
Neighbors

Perform
Moves

Figure 19: General cycle of a tabu search

The general tabu search package provides an engine that frees the analyst from

writing the controlling code and allows the analyst to concentrate on defining the specifics of

the search. Figure 20 suggests how an analyst can feed specifics into the engine and then

listen for key events that may trigger specific strategies such as intensification, diversification,

and strategic oscillation.

42

New Best Solution
Listener New Current Solution

Listener

Unimproving Move
Made Listener

.and)

Figure 20: General tabu search engine

To create a new tabu search, an analyst would define each of the required objects

and pass them to the Engine. The engine then performs the search as defined by the

analyst's inputs.

The engine makes no assumptions about the structure of an analyst's solution. The

analyst is free to define the solution variables in any manner. The engine only asks that the

analyst's solution be able to duplicate itself when copies of a current solution are needed.

The objective function and penalty function evaluate a given solution however the

analyst sees fit. The two values are added together. Thus one could evaluate the solution in

one function and return zeroes in the other or logically divide the functions into

contributions and penalties. The analyst may specify more than one number as the value for

the solution in which case the list of values are compared lexicographically to determine

which of two solutions is better.

The move manager determines at each iteration which moves (not shown in Figure

20) should be generated. These moves, each in turn, operate on the current solution. The

new solution is evaluated, and the move undoes its operation. If the user specifies, the

43

engine will divide the moves up among available computer processors and evaluate the

neighborhoods simultaneously. The best moves are then be executed for that iteration. Two

moves may specify that their contributions to the total costs of the solution are independent

in which case more than one move may be accepted at each iteration. If this is true the new

solution costs are not reevaluated by the objective and penalty functions but instead are

given by

Costsnm = Costsoli + {CostsafUrmmi - CostsJ + (Costsaflirm0KJ- CostsJ (47)

where the vectors Costsohb Costsaficrmmi, and Costsaflcrmmtj have already been calculated.

When the engine considers a move, it checks with the analyst's tabu list. If the move

is declared tabu, it is not executed unless it results in the best known solution. Moves

selected at each iteration are registered with the tabu list.

The listeners provide a way for the analyst to perform certain actions when events of

interest occur. Each time a new best solution is found or unimproving move is made, for

example, an event is triggered which the analyst could intercept and use to begin

intensification or diversification.

Specifications for interested developers are available in the software development kit

available at the general tabu search package's web site

http://www.crosswinds.net/~rharder/tabusearch/. For examples of others using this

engine, see the theses by Cullenbine (2000), Hall (2000), and Calhoun (2000).

44

Conclusion

A general architecture for solving specific problems based on general components is

proposed. This architecture is realized for routing problems and the AFIT Router exploits

this architecture. The core component of the architecture, the Universal Vehicle Router

(UVR), allows rapid development of routing problem solution tools with the existing suite of

two solvers and the ability to plug in new solvers in the future.

45

Chapter Four: Empirical Analysis

Introduction

The development of the Universal Vehicle Router (UVR), its adaptive tabu search

solver component, and the resulting AFIT Router software required testing to ensure that

the software performed quickly and could solve the appropriate problems. Two types of

tabu lists were considered and tested. Additionally, certain parameters in the adaptive tabu

search have a critical effect on performance and were examined. The UVR is a general

purpose tool so it must be able to handle the well-known problems in VRP and TSP

research venues. The Solomon set of standard problems was used. To solve the Solomon

problems a simple application was designed at the same level as the core AFIT Router. Thus,

two examples of using the UVR to solve specific Vehicle Routing Problems already exist.

Selecting a Tabu List Style in the UVR's Included Tabu Search

Two tabu list styles were tried and tested. One tabu list had a fixed length and

recorded a hash value of the solution. The other tabu list was reactive, increasing and

decreasing tenure as a function of move quality.

Both tabu list styles were applied to all 56 of Solomon problems. The static tabu list

based on the solution performed better more often and remained in the UVR's tabu search.

Table 3 shows how each tabu list style performed, relative to each other.

46

Table 3: Comparing performances of two tabu list styles

Tabu List Style Number of Vehicles
Count Avg Beating

Distance
Count Avg Beating

CPU Seconds
Count Avg Beating

Order Attribute/
Reactive

0 0 4 10.65 16 5.1

Solution Hash/
static

0 0 8 8.46 36 10.2

The three values measured were the number of vehicles needed to visit all the

customers, the total distance traveled by the vehicles, and the time in seconds that a

computer1 took to solve the problems. The count is the number of times that one tabu list

beat the other tabu list. The Avg Beating is the average improvement seen by one tabu list

over the other when an improvement existed.

Setting the Parameters in the UVR's Included Tabu Search

In designing and testing the adaptive tabu search in the UVR, certain parameters

demonstrated a drastic effect on solution time. These parameters were

• the default number of iterations for each starting solution,

• the number of consecutive bad starting solutions to allow before quitting, and

• the maximum number of places to insert a site in a tour.

These three parameters were set at a low and high setting and run against each of the

problems in the Solomon data sets. All runs were made at the maximum effort level with the

1 The computer was a 266Mhz Pentium II running Windows 98 with 128Mb of RAM. The Java Virtual
Machine used was Sun's prerelease of Java 2 vl.3.

47

objective of minimizing the number of vehicles used and the distance traveled. Table 4

shows the settings tested for each parameter.

Table 4: Parameter settings for adaptive tabu search

Parameter
Default (minimum) iterations

Bad consecutive starts before

quitting
Maximum places to insert

Low Setting (L) High Setting (H)

% Number of customers Number of customers
10% Number of starting 50% Number of starting
solutions solutions
10% Tour length 50% Tour length

The measured results were the time taken for the tabu search to solve the problem

and the total distance traveled for the vehicles to visit all the customers. The visual summary

of the results, shown in Figure 21, provides insight into the behavior of the parameters. The

results are averaged across each of the six classes of Solomon problems. See Kinney (2000)

for a more thorough description of these problem sets. The LLH nomenclature identifies a

Low and Mgh setting for each of the three parameters in order: default iterations, bad consecutive

starts before quitting, and maximum places to insert.

48

Average Performance across C1 Problems
1000 300°

Average Performance across C2 Problems
700 5000

LLL LLH LHL HLL LHH HLH HHL HHH

Paramatar Lagand
• Low /High Oaf auR numb« of iterations

• Low/High Numbar ol bad «tart« balora quitting

-Low/High Maximuronumoaf of placas to msartoroar» in tour ■

Average Performance across R1 Problems
taoo T 500°

^Distanci

-CPU

/

f\

LLL LLH LHL HLL LHH HLH HHL HHH

Paramatar Lagand

- Low /High Oalautt numbar ol iteration«

• Low /High Numbar ot bad start« balora quitting

• Low/High Maximum numbar ol placas to insartordar« in (ours

Average Performance across R2 Problems
7000

LLL LLH LHL HLL LHH HLH HHL HHH

Paramatar Lagand
-Low /High DalauR numbar of itorahon»

- Low /High Numbar ol bad «tart» balora quitting

-Low /High Maximum numbar ol piacai to msartordar» in tour«

Average Performance across RC1 Problems
1800 600°

j lOistance

—«—CPU

n n n n n n nil
700 /

A."1
._♦-♦-./

LLL LLH LHL HLL LHH HLH HHL HHH

Paramatar Lagand

- Low /High OatauK numbar ol iteration«

• Low /High Numbar of bad start» balora quitting

- Low /High Maximum numbar ol phcaa to in tar tor dar* in loufi

Average Performance across RC2 Problems
1600 7000

LLL LLH LHL HLL LHH HLH HHL HHH

Paramatar Lagand

• Low /High DalauK numbar ol »ration«

- Low /High Numbar ol bad «taiti balora quitting
• Low/High Maximum numbar of placa« to insartordar« n to

^Oistanc«

-CPU

in r n n r fi
/

LLL LLH LHL HLL LHH HLH HHL HHH

Paramatar Lagand

- Low /High Daf auR numbar of iteration«

• Low /High Numbar of bad «tarts balora quitting

- Low /High Maximum numbar of placa« to insartordar« in tour«

Figure 21: Visual summary of parameter settings tests

The line representing the solve time grows very quickly—almost a full order of

magnitude—as the parameter setting levels increase. This suggests one should keep the

parameters at the low settings. The small amount of variation in the solution qualities (the

bars) provides no reason to increase the parameter settings.

49

These simple tests confirmed what experience in building the tabu search suggested: ■

that the low settings for the three parameters was sufficient to adequately search the solution
i
!

space and arrive at good solutions.

The Universal Vehicle Router, Sample Tabu Search, and Solomon Data Sets

j

i

Since the UVR and sample tabu search is a general-purpose tool, it is not expected to

be the fastest solver or come as close to the optimal solution as other more specific solvers.

The question is whether or not the ease with which the UVR and sample tabu search could !
!

be implemented outweighs its solution quality gap between the best known solutions and the

i
quick-turn solutions. j

|

Figure 22 shows the results of the runs (at parameter setting LLL) along with the j

best known solutions, as reported in the summary of best known solutions to the Solomon

problems published by Kinney (2000). Values are rounded to the nearest whole number.

50

UVR with Tabu Search and Best Known
Solomon Solutions

2500

>
to

a o
c
(0
4-*

2000

1500

1000

500
S3::

C1

■Tabu Search
U Best Known

C2 R1 R2 RC1 RC2

Figure 22: Comparing UVR with tabu search and best known Solomon solutions

Although the distance data represents 56 discrete problems, the chart represents the

data as continuous which is easier to read than 56 bars. The lighter area represents the best

known solutions for each Solomon problem. The darker area on top represents the gap

between the best known solutions and the solutions found by the UVR and sample tabu

search solver. Table 5 shows all of the data. The sample tabu search and UVR, in addition to

being easy to use, fare well on the standard problems.

Table 5: Performance of UVR against best known solutions

Number of Vehicles Distance Traveled Solve Time (sec) Source of

UVR Best UVR Best UVR Besf best known

C101 10 10 852 827 69 1

C102 10 10 960 827 18 1

C103 10 10 923 826 188 2

C104 10 10 913 823 263 2

C105 10 10 860 827 80 2

2 The solve times for the best known solutions are not readily available since they are not often published.
Often the best known solutions are discovered after many runs taking many hours which makes the
interpretation of solve time difficult to publish.

51

Number of Vehicles Distance Traveled Solve Time (sec) Source of

UVR Best UVR Best UVR Besf best known

C106 10 10 877 827 141 1

a 07 10 10 894 827 113 1

C108 10 10 853 827 151 1

C109 10 10 854 827 240 2

C201 3 3 591 592 83 3

C202 3 3 676 592 179 3

C203 3 3 683 591 204 4

C204 3 3 656 591 259 3

C205 3 3 588 589 141 3

C206 3 3 633 588 172 3

C207 3 3 601 588 159 4

C208 3 3 629 588 163 4

R101 20 18 1805 1608 207 1

R102 19 17 1661 1434 251 1

R103 14 13 1587 1207 272 5

R104 11 9 1156 1007 243 6

R105 14 14 1517 1377 228 4

R106 13 12 1344 1252 213 4

R107 12 10 1247 1105 228 6

R108 10 9 1112 964 245 6

R109 13 11 1334 1206 251 6

R110 12 10 1248 1135 248 6

R111 11 10 1242 1097 223 6

R112 10 10 1148 954 232 4

R201 4 4 1544 1254 197 7

R202 4 3 1378 1214 254 8

R203 3 3 1210 949 268 4

R204 3 2 946 867 372 7

R205 3 3 1208 999 234 7

R206 3 3 1094 833 279 5

R207 3 3 1078 815 326 4

R208 2 2 989 739 407 4

R209 3 3 1157 855 293 5

R210 3 3 1232 963 258 7

R211 3 2 980 924 364 8

RC101 16 14 1802 1669 223 5

RC102 14 12 1698 1555 269 8

RC103 13 11 1502 1110 322 5

RC104 13 10 1502 1135 327 6

RC105 16 13 1706 1643 285 8

RC106 13 11 1478 1448 355 8

RC107 12 11 1434 1230 286 6

RC108 11 10 1228 1140 261 8

RC201 4 4 1810 1407 176 7

RC202 4 4 1542 1153 312 7

52

Number o/" Vehicles Distance Traveled Solve Time (sec) Source of

UVR Best UVR Best UVR Best best known

RC203 3 3 1484 1068 258 7

RC204 3 3 1113 804 336 7

RC205 4 4 1758 1302 228 7

RC206 4 3 1421 1156 214 7

RC207 4 3 1362 1075 239 7

RC208 3 3 1099 834 356 4

1. Desrochers er a/. 1992
2. Kohl and Madsen 1997
3. Potvin and Bengio 1996
4. Rochat and Taillard 1995

5. Thangiahefa/. 1994
6. Shaw 1997
7. Kilby et al. 1997
8. Taillard et al. 1997

Conclusion

Tabu search parameters were examined against the Solomon standard problem set.

To solve the Solomon problems required a simple interface to the UVR. By design no

changes to the UVR were necessary to accommodate the Solomon application. The sample

tabu search found good solutions to the problems

53

Chapter Five: Conclusion

Specißc Contributions

This thesis presents a proposed generic architecture for analytic support. This

architectures uncouples the specifics of particular problems from the techniques and

mechanisms used to obtain solutions to the class of problems. The layers proposed and

defined in this architecture provide specific functionality used by other layers in the

architecture.

The architecture was built using routing problems as the focus. Each layer of the

architecture was populated with components appropriate to that layer. A prototype

application for routing UAVs was built on this architecture to meet the specific needs of the

11* Reconnaissance Squadron.

The heart of the architecture, the Universal Vehicle Router (UVR), builds upon an

initial taxonomy for routing problems to provide a reusable component applicable to routing

applications. Module reuse is demonstrated by building a Solomon test set solution

application on top of the UVR.

A general tabu search engine was used to provide the base functionality employed by

the UVR and other research efforts. This general tabu search is enhanced by an adaptive

tabu search providing quality answers to vehicle routing problems.

The prototype AFIT Router application, made possible by the supporting

architecture, has a simple-to-use yet data-rich interface. By maintaining the data and interface

54

to the UVR in the core AFIT Router kernel, the router frees developers to include general

airframe routing without reaching further down into the architecture.

Recommendations for Future Work

Avenues for future work, both applied and theoretical, abound due to the modularity

of the architecture. Applied research can focus on increasing realism in data representation

such as maps, routing concerns such as weather and threats, or application interface issues

such as tighter integration with the DEMPC. Already underway is follow-on work to define

and include pertinent weather concerns in the core AFIT Router. Additionally, post-thesis

discussions are underway to operationalize the AFIT Router by including it in both the

DEMPC by Boeing and mapping software by a different contractor.

Efforts in theoretical advances can focus on expanding the suite of general solvers

for the routing architecture. Another extension is to define and populate similar architectures

for other problem classes.

A combined applied and theoretical effort could examine over-target routing tools

where concerns specific to target-types and platform capabilities determine the specific flight

path characteristics such as approach angle and standoff distance. Such tools can exploit

lower levels of the routing architecture while defining their specific solver interfaces. This

would provide the UAV operator a true end-to-end routing capability.

55

Bibliography

Ackoff, Russell L. "The Future of Operational Research is Past," Journal ofthe Operational
' Research Sodety, 30 (1979).

Battiti, Roberto. "Reactive Search: Toward Self-Tuning Heuristics," Modern Heuristic Search
Methods, Rayward-Smith (ed.), John Wiley and Sons Ltd: 61-83, (1996)

Calhoun, Kevin. Tabu Search for Combat Aircraft Scheduling andRescheduling. MS thesis,
AFIT/GOR/ENS/00M-6. School of Engineering and Management, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, March 2000.

Carlton, William B. A Tabu Search to the General Vehicle Routing Problem. Ph.D. dissertation.
University of Texas, Austin, TX, (1995).

Carlton, William B. and J. Wesley Barnes. "A Note on Hashing Functions and Tabu Search
Algorithms," European Journal of Operational Research, 95:237-239 (1996).

Cullenbine, Christopher. Tabu Search Approach to the Weapons Assignment Model (WAM). MS
thesis, AFIT/GOR/ENS/00M-8. School of Engineering and Management, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, March 2000.

Desrochers, Martin, Jacques Desrosiers, and Marius Solomon. "A New Optimization
Algorithm for the Vehicle Routing Problem with Time Windows," Operations
Research, 40: 342-354 (March-April 1992).

Flood, R. A Java Human Computer Interface for Displaying Maps in Support of a UA V Decision
' Support Tool. MS thesis, AFIT/GCS/ENS/99M-01. School of Engineering, Air

Force Institute of Technology (AU), Wright-Patterson AFB OH, March 1999.

Garcia, Bruno-Laurent, Jean-Yves Potvin, and Jean-Marc Rousseau. "A Parallel
Implementation of the Tabu Search Heuristic for Vehicle Routing Problems with
Time Window Constraints," Computers and Operations Research, 21: 1025-1033 (1994).

Gendreau, Michel, Alain Hertz, and Gilbert Laporte. "A Tabu Search Heuristic for the

56

Vehicle Routing Problem," Management Science, 40: 1276-1289 (October 1994).

Gendreau, Michel, Alain Hertz, and Gilbert Laporte. "New Insertion and Postoptimization
Procedures for the Traveling Salesman Problem," Operations Research, Vo/40, No. 6:
1086-1094(1992).

Gendreau, Michel, Gilbert Laporte, and Rene Seguin. "A Tabu Search Heuristic for the
Vehicle Routing Problem with Stochastic Demands and Customers," Operations
Research, 44: 469-4T7 (May-June 1996).

Gendreau, Michel, Gilbert Laporte, Christophe Musaraganyi, and Eric D. Taillard. "A Tabu
Search Heuristic for the Heterogeneous Fleet Vehicle Routing Problem," Computers
and Operations Research, 26:1153-1173 (1999).

Glove, Fred. "Future Paths for Integer Programming and Links to Artificial Intelligence,"
Computers and Operations Research, 13: 533-549 (1986).

Golden, Bruce L., Gilbert Laporte, and Eric D. Taillard. "An Adaptive Memory Heuristic
for a Class of Vehicle Routing Problems with MinMax Objective," Computers and
Operations Research, Vol 24, No. 5:445-452 (1997).

Hall, Shane. A Group Theoretic Tabu Search Approach to the Traveling Salesman Problem. MS Thesis,
AFIT/GOR/ENS/00M-14. School of Engineering and Management, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, March 2000.

Kilby P., P. Prosser, and P. Shaw. "Guided Local Search for the Vehicle Routing Problem,"
In Proceedings of the 2^ International Conference on Meta-heuristics, (1997).

Kinney, Gary. A Hybrid Jump Search and Tabu Search Metaheuristicfor the Unmanned Aerial Vehicle
'(UAV) Routing Problem. MS thesis, AFIT/GOA/ENS/00M-5. School of Engineering
and Management, Ar Force Institute of Technology (AU), Wright-Patterson AFB
OH, March 2000.

Kohl, N. and O.B.G. Madsen. "An Optimization Algorithm for the Vehicle Routing
Problem with Time Windows Based on Lagrangian Relaxation," Operations Research,
45(3): 395 (1997).

57

Laporte, Gilbert, Yves Nobert, and Serge Taillefer. "Solving a Family of Multi-Depot
Vehicle Routing and Location-Routing Problems," Transportation Science: Vo/22, No.
3: 161-172 (1988).

Laporte, Gilbert. "The Vehicle Routing Problem: An Overview of Exact and Approximate
Algorithms,"European Journalof'Operational'Research, 59:345-358 (1992).

O'Rourke, K. Dynamic Unmanned Aerial Vehicle Routing with a Java-encoded Reactive Tabu Search
Metaheuristic. MS thesis, AFIT/GOA/ENS/99M-06. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, March 1999.

Potvin, J.-Y. and S. Bengio. "The Vehicle Routing Problem with Time Windows—Part II:
' Genetic Search," ORSA Journal on Computing, 8(2): 165 (1996).

Renaud, Jacques, Gilbert Laporte, and Fayez F. Boctor. "A Tabu Search Heuristic for the
Multi-Depot Vehicle Routing Problem," Computers and Operations Research, 23: 229-235
(1996).

Rochat, Y. and E. Taillard. "Probabilistic Diversification and Intensification in Local Search
'for Vehicle Routing," Journal of'Heuristics, 1(1): 147-167 (1995).

Ryan, Joel L. Embedding a Reactive Tabu Search Heuristic in Unmanned Aerial Vehicle Simulations.
MS thesis, AFIT/GOR/ENS/98M. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, February 1998.

Shaw, P. "A New Local Search Algorithm Providing High Quality Solutions to Vehicle
Routing Problems," APES Group, Dept of Computer Science, University of
Strathclyde, Glasgow, Scotland, UK. (June 1997).

Taillard, E., P. Badeau, M. Gendreau, F. Guertain, and J.-Y. Potvin. "A Tabu Search
Heuristic for the Vehicle Routing Problem with Soft Time Windows," Transportation
Science,2>2{2){\991).

Talbi, E.G., Z. Hafidi, and J-M. Geib. "A Parallel Adaptive Tabu Search," Parallel Computing,
24: 2003-2019 (1998).

58

Thangiah, S.R., I.H. Osman, and T. Sun. Hybrid Genetic Algorithm, Simulated Annealing and Tabu
Search Methods for Vehicle Routing Problems with Time Windows. Technical Report
UKC/OR94/4, Institute of Mathematics and Statistics, University of Kent,
Canterbury, UK. (1994).

Toulouse, Michel, Teodor G. Crainic, and Michel Gendreau. "Communication Issues in
Designing Cooperative Multi-Thread Parallel Searches," International Conference.
Boston: Kluwer Academic Press, 1996.

Tsubakitani, Shigeru and James R. Evans. "An Empirical Study of a New Metaheuristic for
the Traveling Salesman Problem," European]ournal of Operational Research, 104:113-
128 (1998).

Woodruff, David L. and Eitan Zemel. "Hashing Vectors for Tabu Search," Annals of
Operations Research, 41:123-137 (1993).

59

Additional References

Armentano, Viniecius A. and Debora P. Ronconi. "Tabu Search for Total Tardiness
Minimization in Flowshop Scheduling Problems," Computers and Operations Research,
26: 219-235 (1999).

Barbarosoglu, Gulay and Demet Ozgur. "A Tabu Search Algorithm for the Vehicle Routing
Problem," Computers and Operations Research, 26: 255-270 (1999).

Crainic, Teodor Gabriel and Michel Gendreau. "Towards an Evolutionary Method—
Cooperating Multi-Thread Parallel Tabu Search Hybrid," Meta-Heuristics: Advances and
Trends in LocafSearch Paradigms for Optimisation. Boston: Kluwer Academic Publishers,
1997.

Cullenbine, Christopher. Tabu Search Approach to the Weapons Assignment Model (WAM). MS
thesis, AFIT/GOR/ENS/00M-8. School of Engineering and Management, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, March 2000.

Glover, Fred and Manuel Laguna. Tabu Search. Boston: Kluwer Academic Publishers, 1997.

Glover, Fred. "Heuristic for Integer Programming Using Surrogate Constraints," Decision
'Sciences, 8: 156-166 (1977).

Hall, Shane. A Group Theoretic Tabu Search Approach to the Traveling Salesman Problem. MS Thesis,
AFIT/GOR/ENS/00M-14. School of Engineering and Management, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, March 2000.

Liaw, Ching-Fang. "A Tabu Search Algorithm for the Open Shop Scheduling Problem,"
Computers and Operations Research, 26: 109-126 (1999).

Lokketangen, Arne and Fred Glover. "Solving Zero-One Mixed Integer Programming
Problems Using Tabu Search," European Journal of Operational Research, 106: 624-658
(1998).

60

Nowicki, Eugeniusz and Czeslaw Smutnicki. "A Fast Taboo Search Algorithm for the Job
Shop Problem," Management Science, 42: 797-813 (June 1996).

Toulouse, Michel, Teodor Gabriel Crainic, Brunilde Sanso, and K. Thulasiraman. "Self-
Organization in Cooperative Tabu Search Algorithms," IEEE International Conference
on Systems, Man, and Cybernetics, 3: 2379-2384 (1998).

Tsubakitani, Shigeru, and James R. Evans. "Optimizing Tabu List Size for the Traveling
Salesman Problem," Computers and Operations Research, Vol25, No. 2:91-97 (1998).

61

